40 research outputs found

    Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates

    Get PDF
    The majority of the keratitis-causing Acanthamoeba isolates are genotype T4. In an attempt to determine whether predominance of T4 isolates in Acanthamoeba keratitis is due to greater virulence or greater prevalence of this genotype, Acanthamoeba genotypes were determined for 13 keratitis isolates and 12 environmental isolates from Iran. Among 13 clinical isolates, eight (61.5 %) belonged to T4, two (15.3 %) belonged to T3 and three (23 %) belonged to the T2 genotype. In contrast, the majority of 12 environmental isolates tested in the present study belonged to T2 (7/12, 58.3 %), followed by 4/12 T4 isolates (33.3 %). In addition, the genotypes of six new Acanthamoeba isolates from UK keratitis cases were determined. Of these, five (83.3 %) belonged to T4 and one was T3 (16.6 %), supporting the expected high frequency of T4 in Acanthamoeba keratitis. In total, the genotypes of 24 Acanthamoeba keratitis isolates from the UK and Iran were determined. Of these, 17 belonged to T4 (70.8 %), three belonged to T2 (12.5 %), three belonged to T3 (12.5 %) and one belonged to T11 (4.1 %), confirming that T4 is the predominant genotype (S2 = 4.167; P = 0.0412) in Acanthamoeba keratitis

    Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells.

    No full text
    The first isolation in the UK of Balamuthia mandrillaris amoebae from a fatal case of granulomatous amoebic meningoencephalitis is reported. Using primary cultures of human brain microvascular endothelial cells (HBMECs), amoebae were isolated from the brain and cerebrospinal fluid (CSF). The cultures showed a cytopathic effect at 20-28 days, but morphologically identifiable B. mandrillaris amoebae were seen in cleared plaques in subcultures at 45 days. The identification of the organism was later confirmed using PCR on Chelex-treated extracts. Serum taken while the patient was still alive reacted strongly with slide antigen prepared from cultures of the post-mortem isolate, and also with those from a baboon B. mandrillaris strain at 1:10,000 in indirect immunofluorescence, but with Acanthamoeba castellanii (Neff) at 1:160, supporting B. mandrillaris to be the causative agent. If the presence of amoebae in the post-mortem CSF reflects the condition in life, PCR studies on CSF and on biopsies of cutaneous lesions may also be a valuable tool. The role of HBMECs in understanding the interactions of B. mandrillaris with the blood-brain barrier is discussed

    Delayed Onset of Symptoms and Atovaquone-Proguanil Chemoprophylaxis Breakthrough by Plasmodium malariae in the Absence of Mutation at Codon 268 of pmcytb.

    Get PDF
    Plasmodium malariae is widely distributed across the tropics, causing symptomatic malaria in humans with a 72-hour fever periodicity, and may present after latency periods lasting up to many decades. Delayed occurrence of symptoms is observed in humans using chemoprophylaxis, or patients having received therapies targeting P. falciparum intraerythrocytic asexual stages, but few investigators have addressed the biological basis of the ability of P. malariae to persist in the human host. To investigate these interesting features of P. malariae epidemiology, we assembled, here, an extensive case series of P. malariae malaria patients presenting in non-endemic China, Sweden, and the UK who returned from travel in endemic countries, mainly in Africa. Out of 378 evaluable P. malariae cases, 100 (26.2%) reported using at least partial chemoprophylaxis, resembling the pattern seen with the relapsing parasites P. ovale spp. and P. vivax. In contrast, for only 7.5% of imported UK cases of non-relapsing P. falciparum was any chemoprophylaxis use reported. Genotyping of parasites from six patients reporting use of atovaquone-proguanil chemoprophylaxis did not reveal mutations at codon 268 of the cytb locus of the P. malariae mitochondrial genome. While travellers with P. malariae malaria are significantly more likely to report prophylaxis use during endemic country travel than are those with P. falciparum infections, atovaquone-proguanil prophylaxis breakthrough was not associated with pmcytb mutations. These preliminary studies, together with consistent observations of the remarkable longevity of P. malariae, lead us to propose re-examination of the dogma that this species is not a relapsing parasite. Further studies are needed to investigate our favoured hypothesis, namely that P. malariae can initiate a latent hypnozoite developmental programme in the human hepatocyte: if validated this will explain the consistent observations of remarkable longevity of parasitism, even in the presence of antimalarial prophylaxis or treatment

    Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells

    Get PDF
    The first isolation in the UK of Balamuthia mandrillaris amoebae from a fatal case of granulomatous amoebic meningoencephalitis is reported. Using primary cultures of human brain microvascular endothelial cells (HBMECs), amoebae were isolated from the brain and cerebrospinal fluid (CSF). The cultures showed a cytopathic effect at 20–28 days, but morphologically identifiable B. mandrillaris amoebae were seen in cleared plaques in subcultures at 45 days. The identification of the organism was later confirmed using PCR on Chelex-treated extracts. Serum taken while the patient was still alive reacted strongly with slide antigen prepared from cultures of the post-mortem isolate, and also with those from a baboon B. mandrillaris strain at 1 : 10 000 in indirect immunofluorescence, but with Acanthamoeba castellanii (Neff) at 1 : 160, supporting B. mandrillaris to be the causative agent. If the presence of amoebae in the post-mortem CSF reflects the condition in life, PCR studies on CSF and on biopsies of cutaneous lesions may also be a valuable tool. The role of HBMECs in understanding the interactions of B. mandrillaris with the blood–brain barrier is discussed

    Population genetic analysis of Plasmodium knowlesi reveals differential selection and exchange events between Borneo and Peninsular sub-populations

    Get PDF
    Funding: A.T. was funded by a Newton Institutional Links Grant (British Council, no. 261868591). S.C. was funded by BloomsburySET and Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1, and MR/X005895/1). T.G.C. was funded by the Medical Research Council UK (Grant nos. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1, and MR/X005895/1).The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBPβ, NBPXα and NBPXβ), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBPβ and DBPγ invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.Publisher PDFPeer reviewe

    Chagas disease in the United Kingdom: A review of cases at the hospital for Tropical Diseases London 1995-2018. The current state of detection of Chagas disease in the UK

    Get PDF
    Background: Chagas disease (CD), is a parasitic disease endemic in Latin America. Presentation in non-endemic areas is either in the asymptomatic indeterminate phase or the chronic phase with cardiac and/or gastrointestinal complications. Methods: The Hospital for Tropical Diseases (HTD) based in central London, provides tertiary care for the management of CD. We reviewed all cases managed at this centre between 1995 and 2018. Results: Sixty patients with serologically proven CD were identified. Most were female (70%), with a median age at diagnosis of 41 years. Three quarters of the patients were originally from Bolivia. 62% of all patients were referred to the HTD by their GP. Nearly half of the patients were asymptomatic (47%). Twelve patients had signs of cardiac involvement secondary to CD. Evidence of gastrointestinal damage was established in three patients. Treatment was provided at HTD for 31 patients (47%). Most patients (29) received benznidazole, five of them did not tolerate the course and were switched to nifurtimox. Of the seven patients receiving this second line drug, five completed treatment, whilst two interrupted it due to side effects. Conclusions: Despite the UK health system having all the resources required to diagnose, treat and follow up cases, there is lack of awareness of CD, such that the vast majority of cases remain undiagnosed and therefore do not receive treatment. We propose key interventions to improve the detection and management of this condition in the UK, especially in pregnant women and neonates

    A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria.

    Get PDF
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria

    Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally.

    No full text
    BACKGROUND: Malaria in humans is caused by apicomplexan parasites belonging to 5 species of the genus Plasmodium. Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease is not known. Dimorphism in defined genes has led to P. ovale parasites being divided into classic and variant types. We hypothesized that these dimorphs represent distinct parasite species. METHODS: Multilocus sequence analysis of 6 genetic characters was carried out among 55 isolates from 12 African and 3 Asia-Pacific countries. RESULTS: Each genetic character displayed complete dimorphism and segregated perfectly between the 2 types. Both types were identified in samples from Ghana, Nigeria, São Tomé, Sierra Leone, and Uganda and have been described previously in Myanmar. Splitting of the 2 lineages is estimated to have occurred between 1.0 and 3.5 million years ago in hominid hosts. CONCLUSIONS: We propose that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia. We speculate on possible scenarios that could have led to this speciation. Furthermore, the relatively high frequency of imported cases of symptomatic P. ovale infection in the United Kingdom suggests that the morbidity caused by ovale malaria has been underestimated

    pfk13-Independent Treatment Failure in Four Imported Cases of Plasmodium falciparum Malaria Treated with Artemether-Lumefantrine in the United Kingdom.

    Get PDF
    We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015 to 2016. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitemia within 6 weeks of treatment with no intervening travel to countries where malaria is endemic. Parasite isolates, all of African origin, harbored variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended
    corecore